Here’s why. Ethereum is based on blockchain technology where all transactions are meant to be irreversible and unchangeable. By executing a hard fork and rewriting the rules by which the blockchain executes, Ethereum set a dangerous precedent that goes against the very essence of blockchain. If the blockchain is changed every time a large enough amount of money is involved, or enough people get negatively impacted, the blockchain will lose its main value proposition – secure, anonymous, tamper proof & unchangeable.

Ethereum-based customized software and networks, independent from the public Ethereum chain, are being tested by enterprise software companies.[47] Interested parties include Microsoft, IBM, JPMorgan Chase,[33][48] Deloitte,[49] R3,[50] Innovate UK (cross-border payments prototype).[51] Barclays, UBS and Credit Suisse are experimenting with Ethereum.
To realize digital cash you need a payment network with accounts, balances, and transaction. That‘s easy to understand. One major problem every payment network has to solve is to prevent the so-called double spending: to prevent that one entity spends the same amount twice. Usually, this is done by a central server who keeps record about the balances.
If you decide to invest in cryptocurrencies, Bitcoin is obviously still the dominant one. However, in 2017 its share in the crypto-market has quite dramatically fallen from 90 percent to just 40 percent. There are many options currently available, with some coins being privacy-focused, others being less open and decentralized than Bitcoin and some just outright copying it.
In 1983, the American cryptographer David Chaum conceived an anonymous cryptographic electronic money called ecash.[7][8] Later, in 1995, he implemented it through Digicash,[9] an early form of cryptographic electronic payments which required user software in order to withdraw notes from a bank and designate specific encrypted keys before it can be sent to a recipient. This allowed the digital currency to be untraceable by the issuing bank, the government, or any third party.
Until relatively recently, building blockchain applications has required a complex background in coding, cryptography, mathematics as well as significant resources. But times have changed. Previously unimagined applications, from electronic voting & digitally recorded property assets to regulatory compliance & trading are now actively being developed and deployed faster than ever before. By providing developers with the tools to build decentralized applications, Ethereum is making all of this possible.
In September 2015, the establishment of the peer-reviewed academic journal Ledger (ISSN 2379-5980) was announced. It covers studies of cryptocurrencies and related technologies, and is published by the University of Pittsburgh.[240] The journal encourages authors to digitally sign a file hash of submitted papers, which will then be timestamped into the bitcoin blockchain. Authors are also asked to include a personal bitcoin address in the first page of their papers.[241][242]

It takes a (global) village to raise a blockchain. The live network and the community of open source developers contribute significantly to this effort. They continuously refine and harden the Ethereum platform, helping it get faster at responding to industry demands for the value propositions it offers. These investments of time and resources speak to their faith in Ethereum governance and the value that businesses and developers see in its capabilities. – Joseph Lubin, CEO of Consensys
In February 2014 the world's largest bitcoin exchange, Mt. Gox, declared bankruptcy. The company stated that it had lost nearly $473 million of their customers' bitcoins likely due to theft. This was equivalent to approximately 750,000 bitcoins, or about 7% of all the bitcoins in existence. The price of a bitcoin fell from a high of about $1,160 in December to under $400 in February.[67]
Until relatively recently, building blockchain applications has required a complex background in coding, cryptography, mathematics as well as significant resources. But times have changed. Previously unimagined applications, from electronic voting & digitally recorded property assets to regulatory compliance & trading are now actively being developed and deployed faster than ever before. By providing developers with the tools to build decentralized applications, Ethereum is making all of this possible.
Ether is a token whose blockchain is generated by the Ethereum platform. Ether can be transferred between accounts and used to compensate participant mining nodes for computations performed.[3] Ethereum provides a decentralized virtual machine, the Ethereum Virtual Machine (EVM), which can execute scripts using an international network of public nodes.[4] The virtual machine's instruction set, in contrast to others like Bitcoin Script, is thought to be Turing-complete. "Gas", an internal transaction pricing mechanism, is used to mitigate spam and allocate resources on the network.[4]
Homero Josh Garza, who founded the cryptocurrency startups GAW Miners and ZenMiner in 2014, acknowledged in a plea agreement that the companies were part of a pyramid scheme, and pleaded guilty to wire fraud in 2015. The U.S. Securities and Exchange Commission separately brought a civil enforcement action against Garza, who was eventually ordered to pay a judgment of $9.1 million plus $700,000 in interest. The SEC's complaint stated that Garza, through his companies, had fraudulently sold "investment contracts representing shares in the profits they claimed would be generated" from mining.[70]
As with other cryptocurrencies, the validity of each ether is provided by a blockchain, which is a continuously growing list of records, called blocks, which are linked and secured using cryptography.[30][31] By design, the blockchain is inherently resistant to modification of the data. It is an open, distributed ledger that records transactions between two parties efficiently and in a verifiable and permanent way.[32] Unlike Bitcoin, Ethereum operates using accounts and balances in a manner called state transitions. This does not rely upon unspent transaction outputs (UTXOs). State denotes the current balances of all accounts and extra data. State is not stored on the blockchain, it is stored in a separate Merkle Patricia tree. A cryptocurrency wallet stores the public and private "keys" or "addresses" which can be used to receive or spend ether. These can be generated through BIP 39 style mnemonics for a BIP 32 "HD Wallet". In Ethereum, this is unnecessary as it does not operate in a UTXO scheme. With the private key, it is possible to write in the blockchain, effectively making an ether transaction.
Lightweight clients consult full clients to send and receive transactions without requiring a local copy of the entire blockchain (see simplified payment verification – SPV). This makes lightweight clients much faster to set up and allows them to be used on low-power, low-bandwidth devices such as smartphones. When using a lightweight wallet, however, the user must trust the server to a certain degree, as it can report faulty values back to the user. Lightweight clients follow the longest blockchain and do not ensure it is valid, requiring trust in miners.[101]

Ethereum-based customized software and networks, independent from the public Ethereum chain, are being tested by enterprise software companies.[47] Interested parties include Microsoft, IBM, JPMorgan Chase,[33][48] Deloitte,[49] R3,[50] Innovate UK (cross-border payments prototype).[51] Barclays, UBS and Credit Suisse are experimenting with Ethereum.


In the blockchain, bitcoins are registered to bitcoin addresses. Creating a bitcoin address requires nothing more than picking a random valid private key and computing the corresponding bitcoin address. This computation can be done in a split second. But the reverse, computing the private key of a given bitcoin address, is mathematically unfeasible. Users can tell others or make public a bitcoin address without compromising its corresponding private key. Moreover, the number of valid private keys is so vast that it is extremely unlikely someone will compute a key-pair that is already in use and has funds. The vast number of valid private keys makes it unfeasible that brute force could be used to compromise a private key. To be able to spend their bitcoins, the owner must know the corresponding private key and digitally sign the transaction. The network verifies the signature using the public key; the private key is never revealed.[7]:ch. 5
×