Bitcoin has been criticized for the amount of electricity consumed by mining. As of 2015, The Economist estimated that even if all miners used modern facilities, the combined electricity consumption would be 166.7 megawatts (1.46 terawatt-hours per year).[142] At the end of 2017, the global bitcoin mining activity was estimated to consume between one and four gigawatts of electricity.[211] According to Politico, even the high-end estimates of bitcoin's total consumption levels amount to only about 6% of the total power consumed by the global banking sector, and even if bitcoin's consumption levels increased 100 fold from today's levels, bitcoin's consumption would still only amount to about 2% of global power consumption.[212]
IE… I have 50 ETH , and want to buy a ‘widget’ for 25 ETH given a particular set of circumstances (it works, or the temperature is >10c tomorrow). I agree with a seller on the conditions of a contract, and we ‘create’ a contract on an Ethereum platform, with appropriate sign-offs and verification. This could be 2 steps, or it could be 1000 steps. Once established in the ‘smart contract’, if it is indeed >10c tomorrow, the contract automatically shifts 25 ETH to your account and ships me my widget. The results are recorded in the blockchain.

In 2016 a decentralized autonomous organization called The DAO, a set of smart contracts developed on the platform, raised a record US$150 million in a crowdsale to fund the project.[25] The DAO was exploited in June when US$50 million in ether were taken by an unknown hacker.[26][27] The event sparked a debate in the crypto-community about whether Ethereum should perform a contentious "hard fork" to reappropriate the affected funds.[28] As a result of the dispute, the network split in two. Ethereum (the subject of this article) continued on the forked blockchain, while Ethereum Classic continued on the original blockchain.[29] The hard fork created a rivalry between the two networks.
In September 2015, the establishment of the peer-reviewed academic journal Ledger (ISSN 2379-5980) was announced. It covers studies of cryptocurrencies and related technologies, and is published by the University of Pittsburgh.[240] The journal encourages authors to digitally sign a file hash of submitted papers, which will then be timestamped into the bitcoin blockchain. Authors are also asked to include a personal bitcoin address in the first page of their papers.[241][242]
The "Metropolis Part 1: Byzantium" soft[citation needed] fork took effect on 16 October 2017, and included changes to reduce the complexity of the EVM and provide more flexibility for smart contract developers. Byzantium also added supports for zk-SNARKs (from Zcash), with the first zk-SNARK transaction occurring on testnet on September 19, 2017.[citation needed]
A cryptocurrency is a digital or virtual currency designed to work as a medium of exchange. It uses cryptography to secure and verify transactions as well as to control the creation of new units of a particular cryptocurrency. Essentially, cryptocurrencies are limited entries in a database that no one can change unless specific conditions are fulfilled.
As a cryptocurrency attracts more interest, mining becomes harder and the amount of coins received as a reward decreases. For example, when Bitcoin was first created, the reward for successful mining was 50 BTC. Now, the reward stands at 12.5 Bitcoins. This happened because the Bitcoin network is designed so that there can only be a total of 21 mln coins in circulation.
Ethereum can also be used to build Decentralized Autonomous Organizations (DAO). A DAO is fully autonomous, decentralized organization with no single leader. DAO’s are run by programming code, on a collection of smart contracts written on the Ethereum blockchain. The code is designed to replace the rules and structure of a traditional organization, eliminating the need for people and centralized control. A DAO is owned by everyone who purchases tokens, but instead of each token equating to equity shares & ownership, tokens act as contributions that give people voting rights.
Ethereum addresses are composed of the prefix "0x", a common identifier for hexadecimal, concatenated with the rightmost 20 bytes of the Keccak-256 hash (big endian) of the ECDSA public key (the curve used is the so called secp256k1, the same as Bitcoin). In hexadecimal, 2 digits represents a byte, meaning addresses contain 40 hexadecimal digits. An example of an Ethereum address is 0xb794F5eA0ba39494cE839613fffBA74279579268. Contract addresses are in the same format, however they are determined by sender and creation transaction nonce.[34] User accounts are indistinguishable from contract accounts given only an address for each and no blockchain data. Any valid Keccak-256 hash put into the described format is valid, even if it does not correspond to an account with a private key or a contract. This is unlike Bitcoin, which uses base58check to ensure that addresses are properly typed.
These decentralized applications (or “dapps”) gain the benefits of cryptocurrency and blockchain technology. They can be trustworthy, meaning that once they are “uploaded” to Ethereum, they will always run as programmed. They can control digital assets in order to create new kinds of financial applications. They can be decentralized, meaning that no single entity or person controls them.
Basically, cryptocurrencies are entries about token in decentralized consensus-databases. They are called CRYPTOcurrencies because the consensus-keeping process is secured by strong cryptography. Cryptocurrencies are built on cryptography. They are not secured by people or by trust, but by math. It is more probable that an asteroid falls on your house than that a bitcoin address is compromised.
Both blockchains have the same features and are identical in every way up to a certain block where the hard-fork was implemented. This means that everything that happened on Ethereum up until the hard-fork is still valid on the Ethereum Classic Blockchain. From the block where the hard fork or change in code was executed onwards, the two blockchains act individually.
^ Jump up to: a b c d e Joshua A. Kroll; Ian C. Davey; Edward W. Felten (11–12 June 2013). "The Economics of Bitcoin Mining, or Bitcoin in the Presence of Adversaries" (PDF). The Twelfth Workshop on the Economics of Information Security (WEIS 2013). Archived (PDF) from the original on 9 May 2016. Retrieved 26 April 2016. A transaction fee is like a tip or gratuity left for the miner.
^ Iansiti, Marco; Lakhani, Karim R. (January 2017). "The Truth About Blockchain". Harvard Business Review. Harvard University. Retrieved 17 January 2017. The technology at the heart of bitcoin and other virtual currencies, blockchain is an open, distributed ledger that can record transactions between two parties efficiently and in a verifiable and permanent way.
Though transaction fees are optional, miners can choose which transactions to process and prioritize those that pay higher fees.[81] Miners may choose transactions based on the fee paid relative to their storage size, not the absolute amount of money paid as a fee. These fees are generally measured in satoshis per byte (sat/b). The size of transactions is dependent on the number of inputs used to create the transaction, and the number of outputs.[7]:ch. 8
×