Central to the appeal and function of Bitcoin is the blockchain technology it uses to store an online ledger of all the transactions that have ever been conducted using bitcoins, providing a data structure for this ledger that is exposed to a limited threat from hackers and can be copied across all computers running Bitcoin software. Every new block generated must be verified by the ledgers of each user on the market, making it almost impossible to forge transaction histories. Many experts see this blockchain as having important uses in technologies such as online voting and crowdfunding, and major financial institutions such as JPMorgan Chase see potential in cryptocurrencies to lower transaction costs by making payment processing more efficient. However, because cryptocurrencies are virtual and do not have a central repository, a digital cryptocurrency balance can be wiped out by a computer crash if a backup copy of the holdings does not exist, or if somebody simply loses their private keys.

Take the money on your bank account: What is it more than entries in a database that can only be changed under specific conditions? You can even take physical coins and notes: What are they else than limited entries in a public physical database that can only be changed if you match the condition than you physically own the coins and notes? Money is all about a verified entry in some kind of database of accounts, balances, and transactions.
The legal status of cryptocurrencies varies substantially from country to country and is still undefined or changing in many of them. While some countries have explicitly allowed their use and trade,[51] others have banned or restricted it. According to the Library of Congress, an "absolute ban" on trading or using cryptocurrencies applies in eight countries: Algeria, Bolivia, Egypt, Iraq, Morocco, Nepal, Pakistan, and the United Arab Emirates. An "implicit ban" applies in another 15 countries, which include Bahrain, Bangladesh, China, Colombia, the Dominican Republic, Indonesia, Iran, Kuwait, Lesotho, Lithuania, Macau, Oman, Qatar, Saudi Arabia and Taiwan.[52] In the United States and Canada, state and provincial securities regulators, coordinated through the North American Securities Administrators Association, are investigating "bitcoin scams" and ICOs in 40 jurisdictions.[53]
Full clients verify transactions directly by downloading a full copy of the blockchain (over 150 GB As of January 2018).[100] They are the most secure and reliable way of using the network, as trust in external parties is not required. Full clients check the validity of mined blocks, preventing them from transacting on a chain that breaks or alters network rules.[7]:ch. 1 Because of its size and complexity, downloading and verifying the entire blockchain is not suitable for all computing devices.
The proof-of-stake is a method of securing a cryptocurrency network and achieving distributed consensus through requesting users to show ownership of a certain amount of currency. It is different from proof-of-work systems that run difficult hashing algorithms to validate electronic transactions. The scheme is largely dependent on the coin, and there's currently no standard form of it. Some cryptocurrencies use a combined proof-of-work/proof-of-stake scheme.[16]
Network nodes can validate transactions, add them to their copy of the ledger, and then broadcast these ledger additions to other nodes. To achieve independent verification of the chain of ownership each network node stores its own copy of the blockchain.[80] About every 10 minutes, a new group of accepted transactions, called a block, is created, added to the blockchain, and quickly published to all nodes, without requiring central oversight. This allows bitcoin software to determine when a particular bitcoin was spent, which is needed to prevent double-spending. A conventional ledger records the transfers of actual bills or promissory notes that exist apart from it, but the blockchain is the only place that bitcoins can be said to exist in the form of unspent outputs of transactions.[7]:ch. 5
As a cryptocurrency attracts more interest, mining becomes harder and the amount of coins received as a reward decreases. For example, when Bitcoin was first created, the reward for successful mining was 50 BTC. Now, the reward stands at 12.5 Bitcoins. This happened because the Bitcoin network is designed so that there can only be a total of 21 mln coins in circulation.
Ethereum’s core innovation, the Ethereum Virtual Machine (EVM) is a Turing complete software that runs on the Ethereum network. It enables anyone to run any program, regardless of the programming language given enough time and memory. The Ethereum Virtual Machine makes the process of creating blockchain applications much easier and efficient than ever before. Instead of having to build an entirely original blockchain for each new application, Ethereum enables the development of potentially thousands of different applications all on one platform.
Direction: Short Reasons for open position: - Price near top part of rising channel - Price near resistance level 203-204 $ - Price can bounced to lower part of upward channel Guys, if you like the idea please put like button and if you have your own ideas you can share it in comments, I would glad to see it too and I will put likes to them too if they will be...
Any services that are centralized can be decentralized using Ethereum. Think about all the intermediary services that exist across hundreds of different industries. From obvious services like loans provided by banks to intermediary services rarely thought about by most people like title registries, voting systems, regulatory compliance and much more.
In cryptocurrency networks, mining is a validation of transactions. For this effort, successful miners obtain new cryptocurrency as a reward. The reward decreases transaction fees by creating a complementary incentive to contribute to the processing power of the network. The rate of generating hashes, which validate any transaction, has been increased by the use of specialized machines such as FPGAs and ASICs running complex hashing algorithms like SHA-256 and Scrypt.[30] This arms race for cheaper-yet-efficient machines has been on since the day the first cryptocurrency, bitcoin, was introduced in 2009.[30] With more people venturing into the world of virtual currency, generating hashes for this validation has become far more complex over the years, with miners having to invest large sums of money on employing multiple high performance ASICs. Thus the value of the currency obtained for finding a hash often does not justify the amount of money spent on setting up the machines, the cooling facilities to overcome the enormous amount of heat they produce, and the electricity required to run them.[30][31]
The Ethereum Virtual Machine (EVM) is the runtime environment for smart contracts in Ethereum. It is a 256-bit register stack, designed to run the same code exactly as intended. It is the fundamental consensus mechanism for Ethereum. The formal definition of the EVM is specified in the Ethereum Yellow Paper.[34][37] On February 1, 2018, there were 27,500 nodes in the main Ethereum network.[38] Ethereum Virtual Machines have been implemented in C++, C#, Go, Haskell, Java, JavaScript, Python, Ruby, Rust, Elixir, Erlang, and soon, WebAssembly (currently under development).

While it’s still early days, Mist, MetaMask and a variety of other browsers look set to make blockchain-based applications accessible to more people than ever before. Even people without a technical background can now potentially build blockchain apps. This is a revolutionary leap for blockchain technology that could bring decentralized applications into the mainstream.


Basically, cryptocurrencies are entries about token in decentralized consensus-databases. They are called CRYPTOcurrencies because the consensus-keeping process is secured by strong cryptography. Cryptocurrencies are built on cryptography. They are not secured by people or by trust, but by math. It is more probable that an asteroid falls on your house than that a bitcoin address is compromised.

Ethereum addresses are composed of the prefix "0x", a common identifier for hexadecimal, concatenated with the rightmost 20 bytes of the Keccak-256 hash (big endian) of the ECDSA public key (the curve used is the so called secp256k1, the same as Bitcoin). In hexadecimal, 2 digits represents a byte, meaning addresses contain 40 hexadecimal digits. An example of an Ethereum address is 0xb794F5eA0ba39494cE839613fffBA74279579268. Contract addresses are in the same format, however they are determined by sender and creation transaction nonce.[34] User accounts are indistinguishable from contract accounts given only an address for each and no blockchain data. Any valid Keccak-256 hash put into the described format is valid, even if it does not correspond to an account with a private key or a contract. This is unlike Bitcoin, which uses base58check to ensure that addresses are properly typed.
Most cryptocurrencies are designed to gradually decrease production of that currency, placing a cap on the total amount of that currency that will ever be in circulation.[25] Compared with ordinary currencies held by financial institutions or kept as cash on hand, cryptocurrencies can be more difficult for seizure by law enforcement.[1] This difficulty is derived from leveraging cryptographic technologies.

^ "Bitcoin: The Cryptoanarchists' Answer to Cash". IEEE Spectrum. Archived from the original on 4 June 2012. Around the same time, Nick Szabo, a computer scientist who now blogs about law and the history of money, was one of the first to imagine a new digital currency from the ground up. Although many consider his scheme, which he calls "bit gold", to be a precursor to Bitcoin
One of the most important problems that any payment network has to solve is double-spending. It is a fraudulent technique of spending the same amount twice. The traditional solution was a trusted third party - a central server - that kept records of the balances and transactions. However, this method always entailed an authority basically in control of your funds and with all your personal details on hand.
Take the money on your bank account: What is it more than entries in a database that can only be changed under specific conditions? You can even take physical coins and notes: What are they else than limited entries in a public physical database that can only be changed if you match the condition than you physically own the coins and notes? Money is all about a verified entry in some kind of database of accounts, balances, and transactions.
• Ethereum’s chart is displaying a textbook case of Gann’s cycles of an inner year. • These cycles can help determine trend direction months ahead of time. The Cycles of the Inner Year Some of the most important lessons that Gann taught were related to time. Gann said that time was the factor that dictated the direction of a trend. Gann focused heavily on time...

A cryptocurrency (or crypto currency) is a digital asset designed to work as a medium of exchange that uses strong cryptography to secure financial transactions, control the creation of additional units, and verify the transfer of assets.[1][2][3] Cryptocurrencies use decentralized control as opposed to centralized digital currency and central banking systems.[4]


EthereumPrice.org was developed by Ether0x in March 2016 to allow users to easily track the price of Ethereum both historically and in real-time. The platform has since evolved to include several fiat currencies (EUR, GBP, JPY and others) as well as price data for a number of Ethereum ERC20 tokens and other blockchain currencies. More recently, prediction data from Augur was also added to provide insight into the future price expectations of the Ether market. Price data is currently sourced from multiple exchanges with the weighted average price of these assets being calculated by CryptoCompare.com. For more details on the weighted average calculation, see our FAQ.
There is no company or centralized organization that controls Ethereum. Ethereum is maintained and improved over time by a diverse global community of contributors who work on everything from the core protocol to consumer applications. This website, just like the rest of Ethereum, was built - and continues to be built - by a collection of people working together.
In the blockchain, bitcoins are registered to bitcoin addresses. Creating a bitcoin address requires nothing more than picking a random valid private key and computing the corresponding bitcoin address. This computation can be done in a split second. But the reverse, computing the private key of a given bitcoin address, is mathematically unfeasible. Users can tell others or make public a bitcoin address without compromising its corresponding private key. Moreover, the number of valid private keys is so vast that it is extremely unlikely someone will compute a key-pair that is already in use and has funds. The vast number of valid private keys makes it unfeasible that brute force could be used to compromise a private key. To be able to spend their bitcoins, the owner must know the corresponding private key and digitally sign the transaction. The network verifies the signature using the public key; the private key is never revealed.[7]:ch. 5
×