Despite bringing a number of benefits, decentralized applications aren’t faultless. Because smart contract code is written by humans, smart contracts are only as good as the people who write them. Code bugs or oversights can lead to unintended adverse actions being taken. If a mistake in the code gets exploited, there is no efficient way in which an attack or exploitation can be stopped other than obtaining a network consensus and rewriting the underlying code. This goes against the essence of the blockchain which is meant to be immutable. Also, any action taken by a central party raises serious questions about the decentralized nature of an application.
Though transaction fees are optional, miners can choose which transactions to process and prioritize those that pay higher fees.[81] Miners may choose transactions based on the fee paid relative to their storage size, not the absolute amount of money paid as a fee. These fees are generally measured in satoshis per byte (sat/b). The size of transactions is dependent on the number of inputs used to create the transaction, and the number of outputs.[7]:ch. 8
As with other cryptocurrencies, the validity of each ether is provided by a blockchain, which is a continuously growing list of records, called blocks, which are linked and secured using cryptography.[30][31] By design, the blockchain is inherently resistant to modification of the data. It is an open, distributed ledger that records transactions between two parties efficiently and in a verifiable and permanent way.[32] Unlike Bitcoin, Ethereum operates using accounts and balances in a manner called state transitions. This does not rely upon unspent transaction outputs (UTXOs). State denotes the current balances of all accounts and extra data. State is not stored on the blockchain, it is stored in a separate Merkle Patricia tree. A cryptocurrency wallet stores the public and private "keys" or "addresses" which can be used to receive or spend ether. These can be generated through BIP 39 style mnemonics for a BIP 32 "HD Wallet". In Ethereum, this is unnecessary as it does not operate in a UTXO scheme. With the private key, it is possible to write in the blockchain, effectively making an ether transaction.

An initial coin offering (ICO) is a controversial means of raising funds for a new cryptocurrency venture. An ICO may be used by startups with the intention of avoiding regulation. However, securities regulators in many jurisdictions, including in the U.S., and Canada have indicated that if a coin or token is an "investment contract" (e.g., under the Howey test, i.e., an investment of money with a reasonable expectation of profit based significantly on the entrepreneurial or managerial efforts of others), it is a security and is subject to securities regulation. In an ICO campaign, a percentage of the cryptocurrency (usually in the form of "tokens") is sold to early backers of the project in exchange for legal tender or other cryptocurrencies, often bitcoin or ether.[47][48][49]


Within a cryptocurrency network, only miners can confirm transactions by solving a cryptographic puzzle. They take transactions, mark them as legitimate and spread them across the network. Afterwards, every node of the network adds it to its database. Once the transaction is confirmed it becomes unforgeable and irreversible and a miner receives a reward, plus the transaction fees.

Ethereum was initially described in a white paper by Vitalik Buterin,[10] a programmer involved with Bitcoin Magazine, in late 2013 with a goal of building decentralized applications.[11][12] Buterin had argued that Bitcoin needed a scripting language for application development. Failing to gain agreement, he proposed development of a new platform with a more general scripting language.[4]:88
^ Jump up to: a b c d e Joshua A. Kroll; Ian C. Davey; Edward W. Felten (11–12 June 2013). "The Economics of Bitcoin Mining, or Bitcoin in the Presence of Adversaries" (PDF). The Twelfth Workshop on the Economics of Information Security (WEIS 2013). Archived (PDF) from the original on 9 May 2016. Retrieved 26 April 2016. A transaction fee is like a tip or gratuity left for the miner.
Researchers have pointed out at a "trend towards centralization". Although bitcoin can be sent directly from user to user, in practice intermediaries are widely used.[36]:220–222 Bitcoin miners join large mining pools to minimize the variance of their income.[36]:215, 219–222[120]:3[121] Because transactions on the network are confirmed by miners, decentralization of the network requires that no single miner or mining pool obtains 51% of the hashing power, which would allow them to double-spend coins, prevent certain transactions from being verified and prevent other miners from earning income.[122] As of 2013 just six mining pools controlled 75% of overall bitcoin hashing power.[122] In 2014 mining pool Ghash.io obtained 51% hashing power which raised significant controversies about the safety of the network. The pool has voluntarily capped their hashing power at 39.99% and requested other pools to act responsibly for the benefit of the whole network.[123] c. 2017 over 70% of the hashing power and 90% of transactions were operating from China.[124]

The receiver of the first bitcoin transaction was cypherpunk Hal Finney, who had created the first reusable proof-of-work system (RPoW) in 2004.[28] Finney downloaded the bitcoin software on its release date, and on 12 January 2009 received ten bitcoins from Nakamoto.[29][30] Other early cypherpunk supporters were creators of bitcoin predecessors: Wei Dai, creator of b-money, and Nick Szabo, creator of bit gold.[25] In 2010, the first known commercial transaction using bitcoin occurred when programmer Laszlo Hanyecz bought two Papa John's pizzas for ₿10,000.[31]

×